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Separation of centre-of-mass motion for a charged two- 
body system in a homogeneous magnetic field 

Daniel Baye 
Physique Theorique et Mathematique CP 229, Universitt Libre de Bruxelles, Brussels, 
Belgium 

Received 18 February 1983 

Abstract. Exact centre-of-mass separation is performed for the problem of a charged 
two-body system in a homogeneous magnetic field. Common eigenstates of three exact 
and one approximate constants of motion are constructed in the creation and annihilation 
operator formalism. Their expression as an infinite series in coordinate representation i s  
obtained using two real linear canonical transformations. An expansion of the wavefunc- 
tion in this eigenstate basis provides an infinite system of differential equations for the 
relative motion. This system of equations differs from the infinite nucleus mass approxima- 
tion by the existence of small terms which couple states with different values of the 
magnetic quantum number. The usual limitation of the number of electron Landau states 
leads to a finite number of coupled equations. 

1. Introduction 

The problem of simple atoms in strong magnetic fields has received considerable 
attention for many years (see Garstang (1977), Canuto and Ventura (1977), Johnson 
et a1 (1983) for reviews and for the implications in solid-state physics and in astrophy- 
sics). Most of the work has been devoted to the accurate determination of atomic 
spectra in the different field regions, the nucleus being considered as infinitely massive 
(infinite-mass approximation). When accurate energy levels are obtained for the 
neutral hydrogen atom in this approximation, the spectrum of hydrogen-like ions is 
simply given by the scaling law (Surmelian and O’Connell 1974, Garstang 1977) 

E ( Z , B )  = Z Z E ( 1 , B / Z 2 )  (1.1) 
where B is the magnetic field and Z the charge number of the nucleus. Implicit in 
the infinite-mass approximation is the assumption that nucleus-mass corrections are 
negligible, like in the low-field limit. Recently however, Virtamo and Simola (1978) 
and Wunner eta1 (1980) have shown that this assumption is incorrect for the hydrogen 
atom in the high-field region (B > lo6 T). 

An important basic quantum mechanical question is raised: can the separation of 
centre-of-mass (CM) motion in a homogeneous magnetic field be performed exactly? 
For a neutral two-body system, a full solution to this problem has recently been given 
(Avron et a1 1978, Herold er a1 1981). The CM motion can be separated out exactly 
and the treatment of the reduced Hamiltonian is not more difficult than in the 
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infinite-proton-mass approximation when the CM motion is parallel to the field axis. 
In this case, the proton-mass correction can be accounted for, with good accuracy, 
by a constant energy shift proportional to the proton cyclotron energy. Therefore, 
the CM correction is small with respect to the total energy of the system (which includes 
the electron cyclotron energy) but is no longer negligible with respect to the Coulomb 
binding energy of the system for large magnetic field strengths. 

The relative simplicity of the neutral two-body problem arises from the existence 
of four constants of motion which commute with each other: the three components 
of the pseudomomentum (Avron et a1 1978) and an operator which, for particular 
gauge choices, becomes identical to the orbital momentum component along the field 
axis. For a charged two-body system, the transverse components of the pseudomomen- 
tum cannot be made sharp simultaneously. The problem is then more complicated 
since one of the constants of motion becomes useless. However, Avron et a1 have 
shown that a notion of reduced Hamiltonian still exists in this case. Besides, they 
found that the spectrum of the system is infinitely degenerate. 

The aim of this paper is to present an exact analytical treatment of CM separation 
for a charged two-body system in a homogenous magnetic field. Recently, we have 
proved the existence of an approximate constant of motion for the charged case (Baye 
1982). This approximate constant of motion commutes with the three exact ones and 
with all but a small term of the Hamiltonian: the nucleus kinetic energy term. With 
four constants of motion (exact and approximate), the CM motion can be separated 
out in the charged problem also. Intuitively, we expect the electron-plus-nucleus 
system to behave like a charged particle with mass near to the nucleus mass. This 
‘particle’ should have a spectrum similar to a harmonic Landau spectrum (the infinite 
degeneracy of such a spectrum corresponds to the degeneracy found by Avron et a l ) .  
Since the nucleus cyclotron energy is about half the proton cyclotron energy, and 
since the Coulomb energy of a charged system is enhanced with respect to the hydrogen 
energy (see (l.l)), the CM corrections are expected to play, for low-lying CM states, a 
smaller role than the constant correction of the neutral case. However, the existence 
of a full (more or less harmonic) excitation spectrum should allow higher CM excitation 
energies and makes an exact study of the problem worthy of interest. 

In $ 2 ,  the problem of a single particle in a homogeneous magnetic.field is 
summarised, with particular emphasis on charge-sign dependence. The two-body 
problem and its exact and approximate constants of motion are presented in 9: 3. 
Section 4 is devoted to the construction of a common eigenstate basis of the constants 
of motion. In 3: 5, the matrix elements of the interaction potential are shown to be 
strikingly simple in this basis. An exact system of coupled differential equations is 
derived in $ 6 and discussed. Concluding remarks are presented in $7 .  

2. Charged particle in a homogeneous magnetic field 

The quantum mechanical problem of a single particle in a magnetic field has been 
treated by many authors (see e.g. Cohen-Tannoudji et a f  1973, Virtamo and Jauho 
1975, Garstang 1977, Canuto and Ventura 1977, Avron et a f  1978). In most cases, 
however, the authors have focused on the problem of a negatively charged particle. 
In the present work, we shall need formulae and notations with an explicit reference 
to the sign of the particle charge. For this reason, this section is devoted to a summary 
of single-particle properties and to a presentation of appropriate notations. 
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Let r and p be respectively the coordinate and momentum of a particle with mass 
m and charge q. In a homogeneous magnetic field B = Bi, the non-relativistic spinless 
Hamiltonian is 

H = (2m)- 'n2 (2.1) 

n = p - q A  (2.2) 

where the kinetic momentum ?I reads 

where A is the vector potential. With the gauge (which we shall use throughout) 

A = i B  x r ,  (2.3) 

the pseudomomentum (Johnson and Lippmann 1949, Avron eta1 1978) can be written 

k = p  +qA. (2.4) 

Its components and the component I ,  of the angular momentum are constants of 
motion. The commutator of k ,  and k ,  is -ihqB. Since k,  and k ,  do not commute, 
the most useful constants of motion are k: = k: + k: ,  pL and 1,. 

In the following sections, we need the expression of the above-mentioned operators 
in creation and annihilation form. In this formalism, it is convenient to introduce the 
Larmor frequency 

w = IqIB/2m (2.5) 

(i.e. half the cyclotron frequency) and the Larmor radius 

b = (2h/lq/B)'/2 = (h/mw)'/2. (2.6) 

Then we define (Cohen-Tannoudji et a1 1973, Canuto and Ventura 1977, Avron et 
a1 1978, Johnson et a1 1983) 

t 1  
U,  = ~ ( x / b  -b  a/ax)*ii(y/b - b  a / d y )  

U,  = :(x/b + b a/ax) T ii(y/b + b a / a y  j 

with the algebra 

[ a * , a : l = l  

(2.7) 

all the other commutators being zero. 

[r, = 2-1'2(r, *irr,)] 
With these operators, the spherical components of n and k can be written 

ry) = k:)  = -i(hlqlB)1'2aT 7T.F '*I = k'," =i(h)qlB) a,. (2.9) 

In (2.9), the superscript denotes the sign of charge q. With (2.7) and (2.9), the 
transverse part of the Hamiltonian and the constants of motion take the form 

1/2 t 

k:"' = h l q ( B ( 2 a h T +  1)  (2.10) ( + ) 2  - nL - 
I, = (2qB)-'(kYJZ - n:'")= ~ ( U ; U +  -u 'u- ) .  

Ins)'*'= (n ! s ! ) - 1 ~ 2 ( a ~ ) n ( a : ) s ~ ~ )  (2.12) 

(2.11) 

The common eigenstates of these operators are readily obtained as 
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where 10) is a boson vacuum defined by a,iO) = 0, with the properties 

H:" = (2n + l)h+S)'*' 

I ,  Ins)'*' = f (s - n)h/ns)" ' .  

k y * / n s ) ' * ' =  (2s + 1)hlqlBlns)"' (2.13) 

In coordinate representation, the expressions of the eigenstates (2.12) are given for 
a negative charge by equation (43) of Virtamo and Jauho (1975), equation ( 5 )  of 
Simola and Virtamo (1978) and equation (A.25) of Canuto and Ventura (1977). 

3. The charged two-body problem 

From now on, we specialise to the following problem: we consider two particles with 
masses mo and m and charges qo and q1 verifying the conditions 

q o > o  q1<0 40>141/ ( 3 . 1 ~ )  

mo>>ml .  (3.16) 

Condition ( 3 . 1 ~ )  is not a real restriction since the neutral problem has been treated 
by Avron et a1 (1978) and Herold et a1 (1981) and since the other cases might be 
treated like in the following (the treatment is even simpler if both charges have the 
same sign-see # 4). On the contrary, condition (3.16) is essential for the existence 
of an approximate constant of motion (Baye 1982). If this condition were not met, 
the equations derived in 9: 6 would remain valid but would be much more complicated 
to solve. 

The Hamiltonian of the system is 

H = (2mo)-'7r;+(2m1)-'tr:+ v (3.2) 

where V is a translation-invariant interaction potential with a cylindrical symmetry 
around the field axis. We also make use of the decomposition 

(3.3) 

where H I  and H, are the transverse and parallel interaction-free parts of the Hamil- 
tonian. 

H = H ,  + H ,  + V 

Besides parity, the constants of motion are the total pseudomomentum 

K =k,+k1 (3.4) 

L;  = loz + l l , .  (3.5) 
The operator K, is identical to the z component of the CM momentum P = p o + p l .  
Since K,  and K ,  do not commute, the number of commuting constants of motion is 
three, i.e. one less than in the neutral case. The operator (Baye 1982) 

c = (1 +91/40).sro-(41/4o)~o+k1 (3.6) 

is readily seen to commute with K, condition ( 3 . 1 ~ )  being here unnecessary. Moreover, 
C commutes with V and .sr?/2m1 but not with the small term 7r~ /2mo .  The operators 
P,, K: ,  L ,  and C: are thus four commuting, exact or approximate, constants of motion. 

and the z component of the total angular momentum 
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In the direction parallel to the field, the situation is not different from the neutral 
case: the CM motion is free and can easily be separated out. In the rest of this section, 
and in S94 and 5, we shall restrict the discussion to the problems related to the 
transverse motion. 

A natural basis for the study of H ,  is the independent-particle basis. Let us thus 
introduce the boson operators (2.7) for particles 0 and 1. With this formalism, H ,  
reads (see (2.5), (2.10) and ( 3 . 1 ~ ) )  

H ,  = h w o ( 2 a ~ - a o - + 1 ) + h w ~ ( 2 a : + u l + + 1 ) .  (3.7) 

With (2.11) and (3.5), operator L,  also takes a simple form, involvingnumber operators 
only. Both operators are diagonal in the basis 

jnlnoslso) = ( n  l ! n o ! s l ! s o ! ) - 1 ' 2 ( u ; +  ) n l ( u ~ , - ) f l ~ ~ ( u ~ -  ) " ( a i +  ) s c l j ~ )  (3.8) 

where 10) is a two-particle vacuum defined by uo*lO) = al,)O) = 0. However, this basis 
is not very convenient since the quantum numbers so and s1 are not related to constants 
of motion whereas the constants of motion K :  and C: are not diagonal. A more 
appropriate basis is introduced in 9: 4. 

4. Common eigenstates of the exact and approximate constants of motion 

Let us introduce the creation and annihilation operators A: and A +  associated with 
the total pseudomomentum K.  With (2.9) and (2.10), one has 

(4.1) K :  = hQB (2A :A + + 1) 

where 

Q = 40- /qi /  (4.2) 

-E = 041//40)"2 (4.3) 

is the total charge. With (3.4), (2.9) and the notation 

the operators A :  and A + are expressed as 

(4.4a) A: =(1 --E ) (ao+ -&ai - )  A + = ( ~ - - E  ) ( u ~ + F u : - ) .  

Because of condition (3 . la) ,  E is smaller than unity. Obviously, A i  commutes with 
ab- and U ; + .  In order to complete the canonical set, let us also define the canonically 
conjugate operators 

(4.4b) 
which commute with the other operators of the set. Equations (4.4) express a linear 
canonical transformation (Moshinsky and Quesne 1971, Wolf 1979). Notice that it 
is not a point transformation (i.e. a transformation involving the coordinates only) 
since the right-hand sides of (4.4) mix creation and annihilation operators. This 
emphasises the complication introduced by condition ( 3 . 1 ~ ) .  If q0 and q1  were both 
positive or negative, the canonical transformation would be point-like. 

Besides H ,  (equation (3.7)) and K !  (equation (4.1)), L ,  also takes a simple form 
with the new canonical set 

2 - 1 / 2  i 2 - 1 f 2  

2 - 1 / 2  2 - 1 f 2  t a: = (1 - -E ) ( -&ao++a:-)  a - = ( l - &  ) (-&a"+ - - U I - )  

L ,  = h(a :+U - &ao- - U  ' U -  +A:A+). (4.5) 
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The Hamiltonian and the two exact transverse constants of motion are thus diagonal 
in the basis (hereafter called intermediate basis) 

(4.6) 

where a new vacuum 10) is defined by a1+16) = ao-l@ = U $ )  = A+I@ = 0. This 
vacuum is related to 10) by 

t s -  InlnosS) = (nl!no! s ! S ! ) - 1 ~ 2 ( a ~ + ) n ~ ( a ~ - ) " 0 ( a ~ ) ' ( A + )  10) 

I b ) = ( l  -.s2)l/' exp(eai+a:-)/o) (4.7) 

as shown from (4.4) and from the definition of the new vacuum. 

motion C: is not diagonal. Indeed, using (2.9), (3.6) and (4.4), one obtains 
However, the basis (4.6) still presents a drawback: the approximate constant of 

(4.8) C: =hQB{2[~a; + ( l - ~  2 ) 1/2  u ~ - ] [ E u - + ( ~ - E ~ ) ~ / ~ u O - ] + ~ } .  7 

This is of course not surprising since C: does not commute exactly with H,. 
Let us introduce a second canonical transformation 

(4.9) 
and the corresponding relations for a. and a. The first relation (4.9) is inspired by 
the expression (4.8) of C:. The second one ensures that the canonical commutation 
relations are verified. Notice that, contrarily to (4.4), the present canonical transforma- 
tion is point-like and conserves the vacuum 16). 

Now, the three exact or approximate constants of motion take simultaneously 
simple forms. Besides (4.1), one obtains 

2 1 / 2  a 2 1 / 2  a:, = ( l - E  ) ao- + & U  - a ' = - & a ; - + ( l - &  ) a -  

(4.10) 

(4.11) 

The corresponding basis states are 

In IvOvS) = (n l !  v o ! a ! S ! ) - ' " ( ~ ~ +  )"l(ab)"'l(a t)'(A:)slG). (4.12) 

Their expressions in coordinate representation are not simple. The principle of their 
derivation is explained in the appendix. 

Since C', is not an exact constant of motion, H ,  becomes more complicated but 
only slightly non-diagonal: 

H ,  =hw1(2a:+al++1)+(1-E2)hW0(2a: , (Yg+1) 

+ & 2 h W o ( 2 a t a  + 1)-&(1 -&2)1~ZhWo(a ta~+a:a) .  (4.13) 

The first two terms resemble expression (3.7). The other terms are small and the 
non-diagonal term arises from the fact that C: does not commute with ni l .  

The eigenstate basis receives a clear interpretation in terms of two nearly 
decoupled pseudoparticles. A first pseudoparticle has K as pseudomomentum and C 
as kinetic momentum. Its charge is easily obtained to be the total charge Q by 
inspecting the commutation relations of the components of C, and K l .  With (2.1 l), 
one can even define the z component of its orbital momentum as f t ( A : A + - a ~ ( ~ ~ ) .  
Hence, the difference of quantum numbers S - v o  can be interpreted as its magnetic 
quantum number. The second pseudoparticle is very similar to the light particle 1. 
Its kinetic momentum is ml but its pseudomomentum is kl - (q l /qO)(ko-mo) .  Its 
charge is found to be q1 and (2.11) provides the orbital-momentum z component 
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A ( a ~ + a l +  -a 'a). The magnetic quantum number of this negatively charged particle 
is then n -U ,  Notice that the expression (4.11) of L,  can be reinterpreted as the sum 
of the orbital momenta of the two pseudoparticles. Finally, the masses of the 
pseudoparticles can be derived from the coefficients of the number operators aha, 
and a:+al+ in (4.13). These masses are respectively mo and m l .  The pseudoparticle 
description is accurate if the last two terms of (4.13) are small, i.e. if conditions (3 . lb)  
or qo >> (qll are satisfied. 

5. Potential matrix elements in the eigenstate basis 

The interaction potential V is assumed to be an analytical function of r: ( r  = r l  - ro),  
the relative coordinate z in the direction parallel to the field axis being considered 
as a parameter. Using (2.7), (4.4) and (4.9), one obtains 

(rll-r0J =b:(a:+ +a)(al++a+).  (5.1) 
The potential does not depend on operators a:, a. and A:, A, .  Therefore, its matrix 
elements in the eigenstate basis read 

( n  1 vOuS 1 vln i vba'S') 

= svoubSss+zl! n i !u!u~!)-" '  < iJ(a)"(al,)"l ~ ( a : + ) " ; ( a  +)' ' l~). 
The Kronecker symbols arise naturally from the fact that V commutes with the 
operators C: and K : .  Moreover, the matrix element can still be simplified as 

(5.2) 

(5.3) 

We have taken advantage of the particular form of r :  in (5.1) to introduce a coordinate 
representation (see (2.7)) associated with the light pseudoparticle, namely 

(5.4) 

The most striking property of the eigenstate basis is exhibited in (5.3): the matrix 
element is identical to the expression encountered in the infinite-mass approximation. 
Indeed, the wavefunction & l u ( r l )  in (5.3) is the usual wavefunction of a particle 
with mass m l  and charge q1 (references giving its explicit form have been quoted in 
li 2). Explicit analytic expressions or techniques of numerical computation of the 
matrix elements VEpnl have been discussed by many authors (e.g. Ventura 1973, 
Canuto and Ventura 1977, Simola and Virtamo 1978, Proschel et a1 1982). Let us 
only quote the important selection rule due to the cylindrical symmetry of the potential 

x ' + i y  = b (a  :+ + a x ' - i iy '=bl (a l++at ) .  

n l - c r = n i  -U ' .  ( 5 . 5 )  
The magnetic quantum number of the light pseudoparticle is conserved. 

6. Exact separation of CM motion 

The exact constants of motion of the problem are P,, K:,  L ,  and parity. The eigenstates 
Q of the problem can be labelled by the corresponding good quantum numbers K, S 
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and M (the parity quantum number has been dropped because it does not play any 
role here; it becomes important when solving the equations we shall derive). Let us 
introduce the expansion 

A mixed notation is employed in (6.1) to emphasise the fact that the basis states need 
not be given in coordinate representation. The three summation indices are not 
independent; (4.11) shows that they are related by 

vo+a-n1 = s - M .  (6.2) 
To simplify the notations, the unknown functions qnlu are not labelled by the good 
quantum numbers nor by the redundant index vo. 

Introducing (6.1) in a Schrodinger equation with Hamiltonian (3.3) and using 
(4.12), (4.131, (5.2) and ( 5 . 3 ,  one obtains the infinite system of coupled equations 

-hwos(l  -E2)1/2[a1’2(vo+ 1) 1/2 q n l u - l ( Z ) + ( a +  1)1’2v01/2qn,u_l(z)3= 0 

where ,u is the reduced mass. Equations (6.3) depend in a trivial way on the good 
quantum number K. They also depend implicitly on the difference of good quantum 
numbers S - M  through v o  and (6.2). The infinite degeneracy announced by Avron 
et a1 (1978) (see also Baye (1982)) is thus explicitly obtained here. Only the difference 
of good quantum numbers S - M  has an influence on the solution. 

The physically interesting energies correspond to light-particle Landau states with 
n l  = O  since hw1(2nl+ 1 )  is the dominant term in (6.3). For a given value of S - M ,  
(6.2) provides the condition n 1 2 M  - S .  Hence, low energy states are restricted to 

S - M a o .  (6.4) 
In order to have a better insight into (6.3), let us consider the limiting case of 

highly charged hydrogen-like atoms (qo>>lql/). Then E is small and (6.3) can be 
approximated by 

(6.5) 
u u i - n ,  -n  ; + C v n l n i  (Z)qnim+nl-n;(~)=O. 

n j f n l  

Equation (6.5) can also be derived from the approximate Hamiltonian 

H ,  = ( 2 m o ) - ’ ~ ’  + (2m l ) - lm? + v (6.6) 
introduced in Baye (1982). A comparison with (3.2) shows that the kinetic energies 
of the particles are replaced by the kinetic energies of the pseudoparticles defined in 
54.  Operators L,, P,, K :  and C: are four exact constants of motion of H,. The 
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orbital momentum components h(a:+al+-ata)  and h(A:A+-abo)  of the 
pseudoparticles are linear combinations of these operators (see (2.11) and (4.1 1)) and 
are thus also constants of motion. In this approximation, vo and the magnetic number 
n --(T of the light pseudoparticle are good quantum numbers. The former is the 
Landau energy quantum number of the heavy pseudoparticle. The latter closely 
corresponds to the magnetic quantum number of the infinite-mass approximation. 
The coupled equations (6.5) differ from the infinite-mass approximation for a given 
magnetic quantum number n - -(T by trivial CM corrections and by the cyclotron energy 
term hwo(2vo+ 1). The intuitive picture discussed in the introduction, of an harmonic 
Landau spectrum of the nucleus superimposed as a fine structure on the infinite- 
nucleus-mass spectrum, is thus valid when q o  >> 1411. 

Now, we have an obvious interpretation of the terms of (6.3) which have been 
neglected in (6.5). These small coupling terms arise from the fact that C: is not an 
exact constant of motion. They introduce a coupling between states corresponding 
to different values of the approximate magnetic quantum number n l  -U. The largest 
correcting terms are proportional to hwo& = (ml/mo&)hwl.  

Finally, let us discuss briefly the principle of the approximation necessary to solve 
the system of equations (6.3).  The usual approximation for such an infinite set of 
coupled equations is to truncate it with the condition n l  S N  (Simola and Virtamo 
1978). With this restriction and with (6.2), the number of coupled equations is ( N  + 1) 
( S  -M + 1 +N/2).  Although this number is larger than the number N + 1 of coupled 
equations in the infinite-mass approximation, the search for approximate numerical 
solutions remains feasible. In particular, in the adiabatic approximation (N  = 0), the 
number of coupled equations is S -M + 1 in place of unit for an infinitely massive 
nucleus. 

7. Conclusion 

The existence of an approximate constant of motion C for the charged two-body 
problem (Baye 1982) allowed us to reinterpret the tranverse interaction-free Hamil- 
tonian in terms of two weakly coupled pseudoparticles. The first pseudoparticle is 
characterised by the total charge of the system and the nucleus mass. The second 
pseudoparticle has the same charge and mass as the electron but has a modified 
pseudomomentum. These pseudoparticles are represented by the common eigenstates 
of the exact and approximate constants of motion K:,  C: and L,. In the creation 
and annihilation operator formalism, these eigenstates are very easy to handle and 
lead to strikingly simple expressions for the matrix elements of several useful operators. 
On the contrary, their expression in coordinate representation which can be obtained 
by performing two linear canonical transformations, is much more complicated. 

The main result of the present paper is that CM motion can be separated out 
exactly for the charged problem with an expansion of the wavefunction in the eigenstate 
basis. (Here we use the abbreviation ‘CM’ in spite of the fact that the usual notion of 
centre-of-mass is valid in the direction parallel to the field axis only.) The technique 
of separation is more complicated than in the neutral problem but the resulting system 
of differential equations is in some respects simpler: the Coulomb matrix elements 
are those of the infinite-mass approximation, while they may involve displaced Landau 
states in the neutral case, if the CM motion is not parallel to the field axis (Merold et 
a1 1981). The solutions depend on the good quantum numbers S and M through 
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their difference. An infinite Landau degeneracy is thus found for charged two-body 
systems (Avron et a1 1978). If the system is truncated by limiting the number of 
allowed electron Landau states, the number of remaining equations is larger by a 
factor close to S -M + 1 than in the neutral problem or in the infinite-mass approxi- 
mation. 

In the case of highly charged ions, an obvious generalisation (equation (6.5)) of 
the infinite-mass approximation should provide fair results. A nucleus Landau spec- 
trum is superimposed on the electron energies of the infinite-mass approximation. 
This approximation, described by the modified Hamiltonian H,  (equation 6.6)), 
supports the naive picture of completely decoupled CM and relative motions. In this 
case, the corrections are very small with respect to the large electronic energies (see 
(1.1)). On the contrary, for low-charge ions like He+, the correction is more important 
and should deviate significantly from a purely harmonic spectrum. The quantitative 
study of these deviations requires a detailed analysis of the truncated system of 
equations (6.3). 
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Appendix 

The boson operator form of the basis states is very convenient for the present study. 
It may, however, be desirable for the physical understanding to express these states 
in coordinate representation. This can be achieved by relations connecting the inter- 
mediate and eigenstate bases to the independent-particle basis since the latter has 
simple expressions in coordinate representation. These relations can be obtained from 
irreducible representations of the group of real linear canonical transformations, i.e. 
for two-boson transformations, the symplectic group Sp(4, R )  (Moshinsky and Quesne 
1971). However, the present canonical transformations ((4.4) or (4.9)) belong to 
simpler subgroups of this group. 

Inspection of (4.9) shows that the second canonical transformation, as a point 
transformation, belongs to the SU(2) subgroup of Sp(4, R ) .  The generators of SU(2) 
are 

(Al l  

These generators obey the familiar SU(2) commutation relations (Hamermesh 1962). 
The basis states InlnosS) are eigenstates l jm) of the Casimir operator J i +  
$(J+J- +J-J,) and of Jo with respective eigenvalues j ( j  + 1) and m where 

J ,  = a la,_ J -  = a-a;- J 0-2(a-a--a;-ao-). -1 + 

(A21 

For a given j-value, the symmetric tensor product states inlnosS)  carry a unitary 
irredicuble representation of dimension 2i + 1 of SU(2). The canonically transformed 
states l n l v o d )  corresponding to the same j-value are thus related to the intermediate 

1 1 
j = 7(s +no) m = z(s - n o ) .  
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basis states by 

(A3) 

where the d',,, are the usual SU(2) d-functions (Hamermesh 1962) and the 'rotation 
angle' only depends on the charge ratio. 

The canonical transformation (4.4) belongs to the Sp(2, R) subgroup of Sp(4, R) .  
The generators of this subgroup are 

( U + Y  ) / 2  InlvoaS) = d{s -nA\ /2 , (u -vo) /2  (2 sin-' &)(nlnosS)  
sno 

( s + n o = u + u u )  

- 7-1 + 
- t i  J+ = a I + ~ o -  J -  = al+ao- 0 - z(a 1+u1+ +u:-uo-+ 1) (A41 

and obey the commutation relations 

[ l o ,  J*l = *.7* [I+, J-] = - 2J0 * 

The basis states Irzlnoslso) are eigenstates 17fi) of the Casimir operator j t -  
i (JJ-  +j-j+) and of -io with respective eigenvalues :( 7- 1) and 61 where 

7 = +(IS' -sol + 1) A =i(s*+so+l ) .  (A5) 

Equations (A5) show that the weight A exceeds the minimal weight 7 by an integer 
value. For a given ?-value, the tensor product states lnlnoslso) carry a unitary 
irreducible representation of Sp(2, R ). Since this group is non-compact, its unitary 
irreducible representations are infinite dimensional. Like in (A3), the transformed 
states InlnosS) with the same 7-value are related to the independent-particle states by 

(A61 InlnosS)= C ~ s o + s l + ~ ) / 2 . ~ s + ~ + ~ ~ / 2  (-2 tanh-' E )In I ~ O S I S O )  

where 2!,,,, is a d-function of the unitary irreducible representations of Sp(2, R). 
Explicit formulae for the representations of the locally isomorphic group SU(1,l)  
can be found in (Vi 1970)t. Notice that (3.Q (4.4), (4.6), (4.7) and (A6) provide an 
alternative method of calculation of the 2-functions. For example, (4.7) and (3.8) 
immediately lead to 

(A71 

With (A7), (A6) can be summed and provides a coordinate representation of 10) in 
closed form. Then closed expressions can be derived for all other states. With (A3) 
and (A6), the wavefunctions can also be represented by series of products of Landau 
wavefunctions. 

p s i +  1 ) / 2  

S O S 1  
(lsc]-s, 1 = i s  -s 1 )  

d;?1/2,1/2 ( P )  = (cosh $-'(-tanh i p ) " .  
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